ACTIVIDADES DE REFUERZO. PRIMER TRIMESTRE.

- 1. **Definiciones:** Explica los siguientes conceptos: Materia, Masa, Volumen, Densidad.
- 2. Sistema Internacional de Unidades (SI): Copia y repasa la lista de las magnitudes del Sistema Internacional de unidades, con sus unidades y símbolos correspondientes.
- 3. Cambio de Unidades: Longitud, superficie, volumen, tiempo, masa, temperatura:

Expresa en cm ²	Expresa en dm ³	Expresa en mL	Expresa en g:	Expresa en segundos
5 m^2	6000 cm^3	5 L	0,07 kg	2 h
0.04 dm^2	$0,45 \text{ m}^3$	20 dm^3	500 mg	1 día
500 mm^2	300000 mm^3	50 cm^3	35 cg	3 h 5 min
$0,003 \text{ dam}^2$	$200,56 \text{ cm}^3$	$0,0006 \text{ m}^3$	6 hg	1 año

Cálculo de volúmenes, masas y densidades.

- **4.** Calcula el volumen de estas figuras. Exprésalo en cm³ y en el SI:
 - a) Cubo de 5 cm de lado.
- b) Prisma de lados 5 dm, 20 cm, 150 mm
- **5.** Al poner una bola de un cierto material en la balanza, ésta marca 197,5 g. Luego introducimos la bola en una probeta que contiene 50 cm³ de agua, y vemos que el nivel sube hasta 75 cm³. Calcula razonadamente:
 - a) Cantidad de materia de la bola.
 - b) Espacio que ocupa la bola.
 - c) Densidad de la bola
- **6.** Un cubo de 8 cm de lado está lleno de un líquido. La masa del líquido es de 410 g. Calcula razonadamente el volumen y la densidad del líquido. ¿De qué sustancia se trata?
- 7. Calcula el volumen y la densidad de un objeto en forma de prisma (de caja rectangular) que tiene 1350 g y sus lados miden 4 cm, 1,5 dm, 50 mm. ¿De qué sustancia está hecho? Razona.

Teoría cinético-molecular, estados de agregación, sustancias puras y mezclas:

- **8.** Explica, usando la Teoría Cinético Molecular (describiendo lo que le ocurre a las partículas) los siguientes conceptos:
 - a) Al calentar un cuerpo, su temperatura aumenta.
 - b) La presión que ejerce un gas sobre las paredes del recipiente que lo contiene.
 - c) Un sólido tiene forma propia, pero un líquido adopta la forma del recipiente que lo contiene.
 - d) Podemos comprimir el aire del interior de una jeringa.
 - e) Un cuerpo se dilata al calentarlo
- **9.** a) Escribe el nombre de los distintos cambios de estado, indicando de qué estado a qué estado cambia, y pon un ejemplo de cada uno.
 - b) Calentamos un líquido hasta la ebullición ¿cómo podremos distinguir si es una sustancia pura o una mezcla?
 - c) ¿Qué diferencias existen entre mezclas homogéneas y heterogéneas? Pon 5 ejemplos de cada una.
 - d) ¿Qué es el soluto y qué es el disolvente e una disolución? ¿Qué les ocurre a las partículas del soluto en una disolución?
 - e) Escribe qué técnica de separación y qué aparatos usarías para separar:
 - 1) aceite y agua
- 2) agua y alcohol
- 3) arena y agua
- 4) los componentes de una tinta

- 6) agua y sal
- 7) arena y limaduras de hierro

Propiedades de algunas sustancias					
Sustancia	Densidad (g/cm ³)	T.F (°C)	T.E. (°C)		
Agua	1,0	0	100		
Hierro	7,8	1538	2861		
Titanio	4,5	1668	3287		
Mercurio	13,6	-38,9	353		
Benceno	0,88	5,5	80,2		
Etanol	0,8	-114	78,3		
Oxígeno	0,00143	- 223	- 183		